

Increasing $h \rightarrow \gamma \gamma$

Patrick Draper

University of California, Santa Cruz

Santa Fe 2012 Summer Workshop

The Data

ignoring channels with likely downward fluctuations in background, CMS data within $\sim 1\sigma$ of SM, $\gamma\gamma$ rate 1.56 ± 0.43 x SM

ATLAS ZZ* within $I\sigma$ of SM, $\gamma\gamma$ rate 1.9 ± 0.5 x SM

Naive (uncorrelated, Gaussian) combination of $\gamma\gamma$ rates: 1.7±0.3 (Moriond: 2.1±0.5)

What is causing this enormous excess?

Theory Uncertainty?

Baglio, Djouadi, Godbole 2012

Adding theory errors linearly & treating as bias rather than nuisance can bring combined $\gamma\gamma$ fit to within 1.3σ of SM

Broadly speaking, most other proposals for increasing the inclusive $h \rightarrow \gamma \gamma$ rate use one/both of these mechanisms:

•New sources of EWSB modify SM couplings that appear in the rate:

```
-h coupling to W > 2m_w^2/(246 \text{ GeV}) (c/a effective models, Spencer's talk. also increases h\rightarrowWW, Vh\rightarrowbb) -h coupling to b < Sqrt(2)m_b/(246 \text{ GeV}) (decreases h\rightarrowbb, increases other rates)
```

New states contribute to production and/or decay:

-increase $\sigma \times BR$ with new loops (stops with small mixing, staus with large mixing, W', vectorlike charged matter with negative coupling to Higgs portal, vectorlike colored matter with positive coupling to Higgs portal.....)

-new final states that look like $\gamma\gamma$ (Brian's talk on degenerate Higgs families, $h \rightarrow aa \rightarrow 4$ boosted γ)

The h++ model in Spencer's talk is an example that uses both mechanisms: direct increase of W coupling through new sources of EWSB, and h++ also appears in the h $\rightarrow \gamma\gamma$ decay loop

In this talk I'll focus on second mechanism (new particles in the production/decay); review examples of:

- mixed staus (Carena, Gori, Shah, Wagner 2011)
- $h \rightarrow aa \rightarrow 4\gamma$ (PD and D. McKeen 2012)

Reason for these examples: mainly influence the $h \rightarrow \gamma \gamma$ rate; everything else mostly SM-like

Modifying σ×BR with new particles X in loops

In the limit that $m_h << 2m_X$ and h is aligned with v,

$$\sim\sim \Delta\beta \log \text{mx, so} \qquad \sim\sim \frac{\Delta\beta}{16\pi^2} \frac{\partial \log m_X^2(v)}{\partial \log v}$$

where $\Delta\beta$ is the shift in the EM or QCD beta function from integrating out X

from multiple X thresholds, get

$$\frac{\Delta\beta}{16\pi^2} \frac{\partial \log \det \mathcal{M}_X^2(v)}{\partial \log v}$$

for the effective hFF, hGG couplings

$$\frac{\Delta\beta}{16\pi^2} \frac{\partial \log \det \mathcal{M}_X^2(v)}{\partial \log v}$$

SM: top gives negative hGG coupling ($\Delta\beta$ <0) and negative hFF coupling ($\Delta\beta$ <0), W gives larger positive contribution to hFF ($\Delta\beta$ >0)

To enhance gluon fusion, easiest to have constructive interference with top loop, for example, stops with small mixing ($\Delta\beta$ <0)

To enhance $\gamma\gamma$ width, easiest to have constructive interference with W loop -W' ($\Delta\beta$ >0)

-scalar or fermionic matter where off-diagonal contribution of v to M dominates and $\Delta\beta$ <0

Staus with large mixing is an example of the latter:

$$\mathcal{M}_{\tilde{\tau}}^{2} = \begin{pmatrix} m_{L_{3}}^{2} + m_{\tau}^{2} + D_{L} & m_{\tau}(A_{\tau} - \mu \tan \beta) \\ m_{\tau}(A_{\tau} - \mu \tan \beta) & m_{e_{3}}^{2} + m_{\tau}^{2} + D_{R} \end{pmatrix} \approx \begin{pmatrix} m_{L_{3}}^{2} & -y_{\tau}^{SM} \tan \beta \boxed{\psi \mu} \\ -y_{\tau}^{SM} \tan \beta \boxed{\psi \mu} & m_{e_{3}}^{2} \end{pmatrix}$$

need large mu*tan beta, stau just above LEP bound

A different possibility: new final states that look like yy

Mechanism proposed by Dobrescu, Landsberg, Matchev (2001):

$$\mathcal{L}_{\mathrm{int}} = rac{1}{\Lambda^2} \left(\partial^{\mu} a
ight)^2 H^{\dagger} H - rac{e^2}{4M} a \, F^{\mu
u} ilde{F}_{\mu
u}$$

given m_h, have 3 basic parameters, which we take to be $(m_a, Br(h
ightarrow aa), M)$

$$m_a, Br(h \to aa), M$$

•
$$\Gamma(h \to aa) = 1.18 \text{ MeV} \left(\frac{m_h}{125 \text{ GeV}}\right)^3 \left(\frac{\Lambda}{\text{TeV}}\right)^{-4} \Rightarrow \text{Br}(h \to aa) \text{ easily non-negligible;}$$

- $Br(a \rightarrow yy)$ can be non-negligible for light enough pseudoscalars;
- $m_a/m_h << I$ (PNGB) \Rightarrow photon pairs are highly boosted and can look like single γ ;

 \Rightarrow 4 γ final state becomes effective $\gamma\gamma$ contribution

Something different: new final states that look like $\gamma\gamma$

DLM studied @ the Tevatron. Can this be happening now at the LHC?

Basic Requirements:

"photon jets" need to pass stringent π^0 rejection (controlled by m_a) satisfy Higgs rate @ LHC (controlled by m_a and $Br(h \rightarrow aa)$) survive LEP search and low-energy constraints (controlled by m_a and M) decays happen within detector radius (controlled by m_a and M)

We concluded:

- -viable parameter space exists
- -UV completions are baroque

PD and D. McKeen 2012

Modifications to SM Branching Ratios

$$\mathcal{B}(h \to \gamma \gamma)_{\text{eff}} = R_{\gamma \gamma} \times \mathcal{B}_{\text{SM}}(h \to \gamma \gamma),$$

 $\mathcal{B}(h \to f\bar{f}, VV) = R_{XX} \times \mathcal{B}_{\text{SM}}(h \to f\bar{f}, VV)$

$$R_{XX} = 1 - \mathcal{B}(h \to aa)$$
 (just from increasing total width)

Assuming 100% $a \rightarrow \gamma \gamma$,

$$\mathcal{B}(h \to \gamma \gamma)_{\text{eff}} = \mathcal{B}(h \to \gamma \gamma) + \epsilon \times \mathcal{B}(h \to aa)$$

 ϵ is the probability that 4 γ is misidentified as 2 γ

or

$$R_{\gamma\gamma} = 1 + \mathcal{B}(h \to aa) \left(\frac{\epsilon}{\mathcal{B}_{\mathrm{SM}} (h \to \gamma\gamma)} - 1 \right).$$

To get enhancement at m_h=125 GeV, $\epsilon \geq \mathcal{B}_{\rm SM} \, (h \to \gamma \gamma) \simeq 0.0023$

ATLAS efficiently vetoes isolated, boosted $\pi^0 \rightarrow \gamma \gamma$ using first ECAL layer, which has finely-segmented strips in rapidity

Most sensitive discriminator:

$$w_{s3} \equiv \sqrt{\sum_i E_i (i-i_{
m max})^2/\sum_i E_i}$$

On unconverted photons, ATLAS uses a weakly η -dependent cut on w_{s3} , approx 0.66 for the most central strips in the barrel.

Avg val for true photons approx $w_{s3} = 0.58$

We simulate h \rightarrow aa \rightarrow 4 γ events and attempt to mock up the more complicated cuts on ECAL variables with cuts on $\Delta\eta_{\gamma\gamma}$, $\Delta\phi_{\gamma\gamma}$

Opening angles controlled by ma

We find that requiring $\Delta \eta_{\gamma\gamma} < 1/2 \times \Delta \eta_{\rm strip}$ simulates the cut on w_{s3}. Also use $\Delta \phi < \Delta \phi_{\rm strip}$ although result is insensitive (much coarser in ϕ)

- -Assume Gaussian profile for single photon energy deposit
- -calibrate width to reproduce average true photon w_{s3}
- -find $\Delta\eta$ for which two photons averaged over strip gives cut value for w_{s3}

What about conversion events? Conversions happen with an η - and E_T -dependent probability ranging from about 10% at low η to more than 50% at larger η

Since we have twice as many photons, many more events contain at least one conversion

Might imagine these are vetoed:

- -for case with γe^+e^- in one cluster, mismatch between track p_T and energy in the calorimeter
- -for case with $2e^+e^-$ in one cluster, multiple conversion vertices

ATLAS currently does not veto on either, and relaxes cuts for conversion events since energy deposit spreads (a bit in η , and more in ϕ due to magnetic field)

We will make the approximation that the value of ϵ relevant for 4γ events containing conversions is the same as the value of ϵ for the unconverted sample, and validate for pion

Substantial contamination requires ma less than tens of MeV

CMS

CMS does cut on the ratio of the calorimeter energy to the tracker p_T in order to isolate single photons

Also has 6x barrel strip size!

 \Rightarrow Expect a somewhat different ϵ between the two experiments

Predicted Rates at the LHC & Constraints

Contours give net diphoton (solid green) and ZZ,WW,bb,TT rates (dashed yellow) expected at the LHC relative to the SM rates, using previous estimation for ϵ .

Constrain $(m_a, \mathcal{B}(h \to aa))$ parameter space with matched filter

$$\hat{R} = \sigma^2 t_i C_{ij}^{-1} d_j$$
$$\sigma \equiv (t_i C_{ij}^{-1} t_j)^{-1/2}$$

Compute \hat{R} at each point, reject if R=1 is outside 90% CL

Favored points lie along green 1.7 contour; χ^2 shallow along contour, so: any m_a ok, $Br(h\rightarrow aa)$ between 0.1% and a few %.

Direct Constraints

Constrain ma, and M through $\frac{e^2}{4M}a\,F^{\mu\nu} ilde{F}_{\mu\nu}$ coupling

Constraints from Primakoff production in beam dump experiments: ok so long as a's decay length is shorter than the target depth, or past detector

Similarly LEP search for $e^+e^- \rightarrow \gamma + inv$ ok if a decays before the detector

These bounds coincide roughly with requirement that decay happens before detector at LHC

quarkonia can decay to γ a through an s-channel virtual photon \Rightarrow lower bound on M

other constraints (g-2, flavor-violating meson decays) more sensitive to additional couplings of pseudoscalar to SM fermions

Model Building Issues for $aF^{\mu\nu}\tilde{F}_{\mu\nu}$ coupling

• Decay length constraints require large $a\,F^{\mu\nu} ilde{F}_{\mu\nu}$ coupling. For a given decay length,

$$M = 9.3 \text{ GeV } \left(\frac{\gamma c \tau}{1 \text{ cm}}\right)^{1/2} \left(\frac{m_a}{40 \text{ MeV}}\right)^2 \times \left(\frac{m_h}{125 \text{ GeV}}\right)^{-1/2}$$

To get 90% of the decays before the ECAL ($\sim 1 \, \text{m}$), need $< 1/2 \, \text{m}$ decay length, so M less than about 200 GeV.

If M generated by integrating out heavy particles, $M\sim 4\pi^2 m/q^2$ So those particles have masses below 10s of GeV: must be SM fermions unless high multiplicity or large q

- NMSSM a possibility. However, light a in NMSSM totally ruled out in this mass range by multiple low-energy measurements Andreas, Lebedev, Ramos-Sanchez, & Ringwald 2010
- Could work if light a couples only to the tau lepton.
 (g-2)_τ poorly known, only constrains M>35 GeV.

Conclusions

In case $h \rightarrow \gamma \gamma > SM$ persists, interesting to delineate possible mechanisms

Minimal SUSY \Rightarrow small- α scenario or light staus in decay loop; many other possibilities in the loop beyond minimal SUSY.

- $h\rightarrow aa\rightarrow 4\gamma$ with γ s collected into two photon jets is another possibility
 - -Favors pseudoscalars between 10 MeV and pion mass and percent-level branching of h→aa
 - -Low scale of physics generating the $a\,F^{\mu\nu}\tilde{F}_{\mu\nu}$ coupling suggests SM particles; constraints on these couplings make UV model building tricky

Backup

FIG. 3. A representative diagram of the leading contribution of the pseudoscalar, a, to $(g-2)_{\mu}$.

FIG. 4. Diagram that gives the leading contribution to $s \rightarrow d + a$ from an effective interaction between a and the top quark.